Utilizing the TQIP infrastructure to measure outcomes and implementation

Avery B. Nathens MD PhD
Medical Director, Trauma Quality Programs, ACS
Objectives

• Scope of Trauma Quality Programs
 • Centers
 • Patients
• TQIP data infrastructure
 • Data description
 • Data flow
 • Data quality
• Modifications of data flow to accommodate research studies
TQIP – Trauma Quality Improvement Program

• Risk-adjusted benchmarking program designed to compare processes of care and outcomes across trauma centers

• Established in 2010

• Over 820 participating trauma centers
 • USA
 • Canada
 • Korea
 • Qatar
American College of Surgeons Trauma Quality Improvement Program

ACS TQIP BENCHMARK REPORT:

OR Ranges:
- Low = 0.35-0.80
- Average = 0.64-1.45
- High = 1.28-2.10

Cohort = All Patients
Quality Program Participation

<table>
<thead>
<tr>
<th>Type of Center</th>
<th>ACS Verified centers</th>
<th>TQIP Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Level I & II</td>
<td>314</td>
<td>508</td>
</tr>
<tr>
<td>Total Pediatric</td>
<td>110</td>
<td>146</td>
</tr>
<tr>
<td>Adult Level III Centers</td>
<td>108</td>
<td>174</td>
</tr>
<tr>
<td>Total</td>
<td>532</td>
<td>828</td>
</tr>
</tbody>
</table>
Patients – Adult programs only

<table>
<thead>
<tr>
<th></th>
<th>Count/annum</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>296,184</td>
<td></td>
</tr>
<tr>
<td>Blunt multisystem</td>
<td>43,325</td>
<td>15</td>
</tr>
<tr>
<td>Penetrating</td>
<td>14,466</td>
<td>4.9</td>
</tr>
<tr>
<td>Shock (SBP<90)</td>
<td>12,490</td>
<td>4.2</td>
</tr>
<tr>
<td>Hemorrhagic shock (SBP<90+transfusion within 4 hrs)</td>
<td>7,251</td>
<td>2.4</td>
</tr>
<tr>
<td>Severe TBI (isolated)</td>
<td>12,716</td>
<td>4.3</td>
</tr>
<tr>
<td>Elderly</td>
<td>107,311</td>
<td>36</td>
</tr>
<tr>
<td>Elderly blunt multisystem</td>
<td>10,752</td>
<td>3.6</td>
</tr>
</tbody>
</table>
National Trauma Data Standard

- Consistency across centers
- Specifies
 - inclusion criteria
 - data definitions
 - source hierarchy
 - format to assure interoperability
- Auto calculated fields
- Levels of validation
NTDS fields

- Demographics
- Pre-Existing Conditions
 - Hypertension, anticoagulants, diabetes, etc
- Injury mechanism
- Pre-Hospital Information
 - Mode of transport
 - Scene Vitals, EMS Dates/Times, etc.
 - Poorly populated – NEMSIS integration pending
- ED Information
 - SBP, Pulse, GCS, etc
NTDS fields

• Hospital Procedure Information
 • ICD-10 PCS; Date/Time

• TQIP Measures - Level I & II TQIP centers
 • Time/date, mode of hemorrhage control
 • Cerebral Monitor; Date/Time
 • VTE prophylaxis
 • Blood products in first 4 hours (for those presenting in shock)
 • Ortho trauma measures (time to OR, soft tissue coverage, AbRx prophylaxis)

• Injury and other diagnoses
 • ICD-10-CM
 • AIS codes
NTDS fields

- Hospital Events
 - VAP, DVT, PE, AKI, SSI, return to ICU/OR, etc.
- Withdrawal of life sustaining interventions (date/time)
- Outcome Information
 - ED and hospital discharge disposition
Venous Thromboembolism - events

Deep Vein Thrombosis (DVT)

Definition
The formation, development, or existence of a blood clot or thrombus within the venous system, which may be coupled with inflammation.

Element Values
1. Yes
2. No

Additional Information
- Must have occurred during the patient’s initial stay at your hospital.
- The patient must be treated with anticoagulation therapy and/or placement of a vena cava filter or clipping of the vena cava.
- A diagnosis of Deep Vein Thrombosis (DVT) must be documented in the patient’s medical record, which may be confirmed by venogram, ultrasound, or CT.

Data Source Hierarchy Guide
1. History & Physical
2. Physician’s Notes
3. Progress Notes
4. Case Management/Social Services
5. Nursing Notes/Flow Sheet
6. Triage/Trauma Flow Sheet
7. Discharge Summary

Pulmonary Embolism (PE)

Definition
A lodging of a blood clot in a pulmonary artery with subsequent obstruction of blood supply to the lung parenchyma. The blood clots usually originate from the deep leg veins or the pelvic venous system.

Element Values
1. Yes
2. No

Additional Information
- Must have occurred during the patient’s initial stay at your hospital.
- Consider the condition present if the patient has a V-Q scan interpreted as high probability of pulmonary embolism or a positive pulmonary arteriogram or positive CT angiogram and/or a diagnosis of PE is documented in the patient’s medical record.
- Exclude subsegmental PEs.

Data Source Hierarchy Guide
1. History & Physical
2. Physician’s Notes
3. Progress Notes
4. Case Management/Social Services
5. Nursing Notes/Flow Sheet
6. Triage/Trauma Flow Sheet
7. Discharge Summary
Rate of pulmonary embolism

<table>
<thead>
<tr>
<th>Cohort</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.6</td>
</tr>
<tr>
<td>Blunt multisystem</td>
<td>1.7</td>
</tr>
<tr>
<td>Shock</td>
<td>2.0</td>
</tr>
<tr>
<td>Severe TBI</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Venous Thromboembolism - prophylaxis

VENOUS THROMBOEMBOLISM PROPHYLAXIS TYPE

REPORTING CRITERION: Report on all patients

DEFINITION
Type of first dose of venous thromboembolism prophylaxis administered to patient at your hospital.

ELEMENT VALUES
1. None
2. Xa Inhibitor (Rivaroxaban, etc.)
3. LMWH (Dabigatran, Enoxaparin, etc.)
4. Other
5. Direct Thrombin Inhibitor (Dabigatran, etc.)
6. Unfractionated Heparin (UH)

ADDITIONAL INFORMATION
- *Element Value “5. None” is reported if the first dose of venous thromboembolism prophylaxis is administered post discharge order date/time.*
- *Venous Thromboembolism Prophylaxis Types which were retired greater than 2 years before the current NTDS version are no longer listed under Element Values above, which is why there are numbering gaps. Refer to the NTDS Change Log for a full list of retired Venous Thromboembolism Prophylaxis Types.*
- *Exclude sequential compression devices*
- *Element Value “10. Other” is reported if “Coumadin” and/or “aspirin” are given as venous thromboembolism prophylaxis.

DATA SOURCE HIERARCHY GUIDE
1. Medication Summary
2. Nursing Notes/Flow Sheet
3. Pharmacy Record

VENOUS THROMBOEMBOLISM PROPHYLAXIS DATE

REPORTING CRITERION: Report on all patients

DEFINITION
Date of administration of first dose of venous thromboembolism prophylaxis administered to patient at your hospital.

ELEMENT VALUES
- Relevant value for data element

ADDITIONAL INFORMATION
- Reported as YYYY-MM-DD.
- Refers to date upon which patient first received the prophylactic agent indicated in *Venous Thromboembolism Prophylaxis Type.*
- The null value “Not Applicable” is reported if *Venous Thromboembolism Prophylaxis Type* is *Element Value “5. None.”*
IX. Processes of Care: Venous Thromboembolism Prophylaxis

Table 24: Pharmacologic VTE Prophylaxis by Cohort

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Group</th>
<th>Patients¹</th>
<th>VTE Prophylaxis</th>
<th>Time to VTE Prophylaxis (days)</th>
<th>Unknown Time to VTE Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N (%)</td>
<td>No Prophylaxis (%)</td>
<td>Median (IQR)</td>
<td>N (%)</td>
</tr>
<tr>
<td>All Patients</td>
<td>All Hospitals</td>
<td>351,275</td>
<td>255,270 (72.7)</td>
<td>27.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>1,103</td>
<td>938 (87.4)</td>
<td>12.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Blunt Multisystem</td>
<td>All Hospitals</td>
<td>50,332</td>
<td>42,391 (84.3)</td>
<td>15.7</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>321</td>
<td>283 (92.5)</td>
<td>7.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Penetrating</td>
<td>All Hospitals</td>
<td>17,661</td>
<td>15,280 (86.6)</td>
<td>13.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>115</td>
<td>104 (90.4)</td>
<td>9.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Shock</td>
<td>All Hospitals</td>
<td>13,326</td>
<td>11,156 (83.7)</td>
<td>16.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>43</td>
<td>40 (93.0)</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Severe TBI</td>
<td>All Hospitals</td>
<td>20,468</td>
<td>14,395 (70.4)</td>
<td>29.6</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>100</td>
<td>57 (68.7)</td>
<td>31.3</td>
<td>17.0</td>
</tr>
<tr>
<td>Elderly</td>
<td>All Hospitals</td>
<td>128,787</td>
<td>88,491 (68.7)</td>
<td>31.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>313</td>
<td>252 (81.3)</td>
<td>18.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Elderly Blunt Multisystem</td>
<td>All Hospitals</td>
<td>12,734</td>
<td>10,176 (80.0)</td>
<td>20.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>88</td>
<td>77 (88.5)</td>
<td>11.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Isolated Hip Fracture</td>
<td>All Hospitals</td>
<td>50,539</td>
<td>44,184 (87.4)</td>
<td>12.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>2</td>
<td>2 (100.0)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

¹ Excluding mortalities (1) in the ED, (2) within the first 48 hours of arrival, and/or (3) with unknown time to mortality
Table 25: Pharmacologic VTE Prophylaxis Type by Cohort

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Group</th>
<th>VTE Prophylaxis</th>
<th>Unfractionated Heparin</th>
<th>Low Molecular Weight Heparin</th>
<th>Direct Thrombin or Xa Inhibitor</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>All Patients</td>
<td>All Hospitals</td>
<td>255,270</td>
<td>48,895 (19.2)</td>
<td>195,664 (76.6)</td>
<td>4,486 (1.8)</td>
<td>6,225 (2.4)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>938</td>
<td>13 (1.4)</td>
<td>921 (98.2)</td>
<td>2 (0.2)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>Blunt Multisystem</td>
<td>All Hospitals</td>
<td>42,391</td>
<td>8,970 (21.2)</td>
<td>32,469 (76.6)</td>
<td>319 (0.8)</td>
<td>633 (1.5)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>283</td>
<td>3 (1.1)</td>
<td>279 (98.6)</td>
<td>1 (0.4)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Penetrating</td>
<td>All Hospitals</td>
<td>15,280</td>
<td>1,845 (12.1)</td>
<td>13,282 (86.9)</td>
<td>39 (0.3)</td>
<td>114 (0.7)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>104</td>
<td>1 (1.0)</td>
<td>103 (99.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Shock</td>
<td>All Hospitals</td>
<td>11,156</td>
<td>2,499 (22.4)</td>
<td>8,359 (74.9)</td>
<td>97 (0.9)</td>
<td>201 (1.8)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>40</td>
<td>1 (2.5)</td>
<td>39 (97.5)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Severe TBI</td>
<td>All Hospitals</td>
<td>14,395</td>
<td>4,948 (34.4)</td>
<td>9,171 (63.7)</td>
<td>99 (0.7)</td>
<td>177 (1.2)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>57</td>
<td>1 (1.8)</td>
<td>54 (94.7)</td>
<td>0 (0.0)</td>
<td>2 (3.5)</td>
</tr>
<tr>
<td>Elderly</td>
<td>All Hospitals</td>
<td>88,491</td>
<td>24,472 (27.7)</td>
<td>57,979 (65.5)</td>
<td>2,867 (3.2)</td>
<td>3,173 (3.6)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>252</td>
<td>5 (2.0)</td>
<td>245 (97.2)</td>
<td>2 (0.8)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Elderly Blunt Multisystem</td>
<td>All Hospitals</td>
<td>10,176</td>
<td>3,017 (29.6)</td>
<td>6,775 (66.6)</td>
<td>149 (1.5)</td>
<td>235 (2.3)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>77</td>
<td>1 (1.3)</td>
<td>75 (97.4)</td>
<td>1 (1.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Isolated Hip Fracture</td>
<td>All Hospitals</td>
<td>44,184</td>
<td>7,362 (16.7)</td>
<td>29,840 (67.5)</td>
<td>3,191 (7.2)</td>
<td>3,791 (8.6)</td>
</tr>
<tr>
<td></td>
<td>Your Hospital</td>
<td>2</td>
<td>0 (0.0)</td>
<td>2 (100.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

1 Excluding mortalities (1) in the ED, (2) within the first 48 hours of arrival, and/or (3) with unknown time to mortality
What’s not in NTDS

- Date/time of hospital complication
- CPT codes
- Costs of care
- Data beyond hospital discharge
 - Late mortality, PROMs
- Additional elements captured in local registries
Inclusion criteria: TQIP vs NTDB

• Inclusion criteria
 • Admitted to, transferred to, died
 • Trauma diagnosis (ICD-10)
TQIP Program Components

- Risk adjusted inter hospital comparisons
- Education/training of registrars
- Enhanced data quality
- Sharing best practices
Data Flow

Hospital trauma registry (ESO, Imagetrend) → Batch Submission → ACS Data Center → Usable data
Implications of Data Flow

• Field mapping might be required to align registry with NTDS
 • If mapping is not optimal, data quality becomes a problem
• Addition of incremental data fields for research requires an additional step
 • Modification of data fields for the entire program ~2 year time horizon
COT Research Initiatives Platform

• Web-based, direct-data-entry platform that is integrated within the TQP Data Center
 • Leverages the ACS data collection infrastructure, including the collection and storage of study data
 • No changes to TQP data submission process and no additional burden of work from registry products (e.g., mapping)
 • 800+ trauma facilities available for recruitment in the study
• Allows collection of new data fields (beyond the NTDS Data Dictionary) that are specific to the research study
• Allows for the collection of new data elements more quickly than adding them to the NTDS Data Collection process
Data flow: Implications for incremental data collection

Hospital registry (trauma registrar) → ACS Data Center → Merged incremental and TQIP datasets

IQVIA web-based platform → Incremental data set → TQIP dataset

Research dataset
COT Research Initiatives Platform

• Platform is customizable to fit the data needs of a specific study
 • New data elements and fields values are gathered using a form-based data collection with real-time data validation
 • Support for many data element types (free text, conditional, multi-select, etc.)
 • Data are aggregated across all participating centers; the data are cleaned and then returned to the investigator for analyses

• Asynchronous
 • Data are entered into the research platform in real time
 • Temporal differences in data submission (real-time vs. quarterly) results in this linkage occurring 1-2 quarters post-discharge
Why?

• Advantages to using an existing data platform
 • Labor costs for data entry are significant
 • ~90% of the costs are covered through existing data collection via your registry
 • No need to think through how to standardize data collection across centers
 • Data definitions
 • Data hierarchy
 • Data quality
Identification of high yield centers for studies

- Queries based on study criteria
- Aggregated patient and facility level data
- If a center is interested in participating, center contact information passed on to investigators
 - Research contacts
Leveraging the Platform for Your Study

• Contact us at traumaquality@facs.org with your research study proposal
• ACS staff will:
 • Determine costs based on scope and statement of work
 • Work with your research team on element design and validation, data dictionary
 • Outline the next steps regarding facility recruitment and enrollment in the study
 • Determine study timelines including data collection, linkage, and delivery of the aggregate dataset
• Incorporate data collection plan in your grant/budget
Summary

• With limited incremental costs, data infrastructure exists to perform clinical trials with high impact

• Good data exists to estimate sample sizes & distribution of cases across centers
Questions?

Contact Avery Nathens:
anathens@facs.org